

User’s Manual
.NET Interop for BusTools-1553

Copyrights

User’s Manual Copyright © 2009 -2018 Abaco Systems, Inc.

This software product is copyrighted and all rights are reserved. The distribution and sale of this product
are intended for the use of the original purchaser only per the terms of the License Agreement.

Confidential Information - This document contains Confidential/Proprietary Information of Abaco Systems,
Inc. and/or its suppliers or vendors. Distribution or reproduction prohibited without permission.

THIS DOCUMENT AND ITS CONTENTS ARE PROVIDED "AS IS", WITH NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF DESIGN, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. ALL
OTHER LIABILITY ARISING FROM RELIANCE ON ANY INFORMATION CONTAINED HEREIN IS
EXPRESSLY DISCLAIMED.

Microsoft is a registered trademark of Microsoft Corporation.
Windows is a registered trademark of Microsoft Corporation.
VxWorks is a registered trademark of WindRiver Systems Corporation.
Tornado is a registered trademark of WindRiver Systems Corporation.

Abaco Systems, Inc. acknowledges the trademarks of other organizations for their respective products or
services mentioned in this document.

.NET Interop for BusTools-1553

BusTools/1553-API Software Revision: 8.22
Document Date: 01 Feb 2018

Abaco Systems, Inc.
26 Castilian Drive, Suite B
Goleta, CA 93117
Main +1 805-965-8000 or +1 805-883-6101
Support +1 805-965-6097

support@abaco.com (email)

https://www.abaco.com/products/avionics

Additional Resources

For more information, please visit the Abaco Systems website at:

www.abaco.com

mailto:support@abaco.com
https://www.abaco.com/products/avionics
http://www.abaco.com/

BustoolsInterop User's Manual i

Contents

Chapter 1 Overview ... 1

Revision ... 1

Introduction .. 1

Chapter 2 The Reference Solution 2

Description ... 2

Chapter 3 The API, Data, and Constants Classes 3

The Bustools1553 Namespace .. 3

The API Class .. 3

The DataTypes Namespace ... 3

The Constants Class .. 3

Chapter 4 Building and Running the Application 4

Chapter 5 Adding the Managed Wrapper to an
Existing .NET Application 5

Chapter 6 Important Coding Differences when
using .NET Wrappers 6

IntFifo Creation and Updating .. 6

Multi-Dimensional Array Data ... 7

Class and Struct versions of Data Types... 7

Chapter 7 Application Notes .. 8

BustoolsCsApp .. 8

BustoolsInterop .. 8

BustoolsInterop User's Manual 1

CHAPTER 1

Overview

Revision

This revision of the .NET Interop Solution is paired with BusTools-1553 API
v8.22. It should not be used with other versions of the BusTools-1553 API.
This revision requires Microsoft Visual Studio 2008 or later.

Introduction
The .NET Interop Reference Solution can give you a quick start to
harnessing the power of the .NET framework for your 1553 application.

The BusTools-1553 API library is an "unmanaged" DLL, and does not use
the .NET framework. By using managed wrapper classes, you can use the
BusTools-1553 library in your managed application.

The reference solution consists of:

• A managed wrapper class written in C# that encapsulates the
BusTools-1553 API and data types.

• A sample managed GUI written in C# that uses the wrapper class to
operate an Abaco 1553 board.

• A sample C# project and C++ unmanaged DLL project that can be used
as a workbench to explore aspects of .NET interop.

The managed wrapper class can be used with C#, VB.NET, or any of the
managed languages .NET supports.

This documentation assumes familiarity with Visual Studio 2008 or later,
and creating and running .NET applications.

BustoolsInterop User's Manual 2

CHAPTER 2

The Reference Solution

Description
The reference solution is a Microsoft Visual Studio 2008 solution in the
root folder, named BustoolsInterop.sln. When you open this solution, you

will see four projects in the solution explorer window.

• BustoolsCsApp: A C# GUI that opens and operates a 1553 board.
• BustoolsCsWrapper: A C# class library that wraps the unmanaged

BusTools-1553 API calls, constants, and data types.
• BustoolsInterop: A C# project that works in conjunction with the CDll

project to demonstrate .NET interop concepts.
• CDll: An unmanaged C++ DLL that represents an unmanaged API.

Used by the BustoolsInterop project.

Familiarity with .NET and C# concepts including interop is required to fully
understand the Reference Solution.

Note: The Reference Solution demonstrates one way to use BusTools-
1553 with a .NET application. Other ways and other user-defined
wrapper definitions are possible.

BustoolsInterop User's Manual 3

 CHAPTER 3

The API, Data, and Constants Classes

The Bustools1553 Namespace
The Bustools1553 namespace encapsulates all the API calls, Data Types,
and Constant definitions. It is recommended you do not change this
namespace name, as it identifies the wrapper and provides name
separation when loaded into other projects.

The API Class
The API static class contains managed entry points for each API call in the
unmanaged BusTools-1553 library. .NET interop requires that managed
entry points be contained in a static class. This class is found in file API.cs.

The DataTypes Namespace
The DataTypes namespace contains managed equivalents of the structures
required by the unmanaged BusTools-1553 library. The managed
equivalents are implemented using C# structures, classes, and unions. This
namespace is found in file DataTypes.cs.

The Constants Class
The Constants static class contains managed definitions of the constants
required by the unmanaged BusTools-1553 library. This class is found in
file Constants.cs.

BustoolsInterop User's Manual 4

CHAPTER 4

Building and Running the Application

You can build and run the Reference Application "out of the box", when the
following requirements are met:

• You have Microsoft Visual Studio 2008 or later.
• BusTools-1553 hardware and API v8.18 or later have been properly

installed on your host.

In Visual Studio, set BustoolsCsApp as the startup project, and then do
"Rebuild All". You can then run BustoolsCsApp.

BustoolsInterop User's Manual 5

CHAPTER 5

Adding the Managed Wrapper to an Existing
.NET Application

First, it is suggested (but not required) that you add the C# project
BustoolsCsWrapper to your existing .NET solution.

Then in the Solution Explorer, right-click your project and select "Add
Reference". If you added BustoolsCsWrapper to your solution, click the
Projects tab and select BustoolsCsWrapper. Otherwise, select the Browse
tab and locate BustoolsCsWrapper.dll on your disk.

At the top of each of your code pages, add the following lines:

using Bustools1553;
using Bustools1553.DataTypes;
using System.Runtime.InteropServices;

You may need to edit the file API.cs in the BustoolsCsWrapper project. At
the top of this file is a statement that defines exactly where Busapi32.dll
should be found. By default, no path is specified, so the standard Windows
search order will be used.

You can now use the managed wrapper classes in your project.

BustoolsInterop User's Manual 6

CHAPTER 6

Important Coding Differences when using .NET
Wrappers

Managed .NET Applications can't directly access memory via pointers, so
there is no possibility of sharing memory between the Managed
Application and an Unmanaged DLL. This is where "Interop Marshaling"
with "Platform Invoke" a.k.a. "P/Invoke" comes in.

When a Managed Application calls functions in an Unmanaged DLL, the
parameters to be passed are "Marshaled" across the managed / unmanaged
boundary by P/Invoke. In general, Marshaling means copying data across
the boundary in one or both directions.

When a structure or class is Marshaled to the Unmanaged DLL, it is copied
to the DLL's address space where the DLL can access it. When the function
returns, the structure may be Marshaled back to the Managed Application
if specified. Because of this, certain BusTools operations that require
shared pointers to IntFifo structures need to be modified.

Additionally, Marshalling presents some challenges especially with multi-
dimensional arrays which are embedded in structures. Because of this, it is
required to flatten the array and use accessor functions to get at it with
multiple indices.

Lastly, most BusTools functions require pointers to structures, so a .NET
class (a reference type) is required. However, some BusTools functions
require arrays of structures. These must be Marshaled as a .NET struct (a
value type). This means that the .NET wrapper contains both struct and
class representations of certain data types.

IntFifo Creation and Updating
When using the BusTools API in C, the user creates the IntFifo and passes
the API a pointer to it. When using .NET, the user requests that the API
create the IntFifo because it must stay in unmanaged memory.

Important Coding Differences when using .NET Wrappers Multi-Dimensional Array Data

BustoolsInterop User's Manual 7

Additionally, when the managed application has completed its IntFifo
processing and modified the tail pointer, It must make a special call to have
the API update its version of the tail pointer.

For an example of this, see the function SetupBcIntFifo in RtTests.cs, in the
BustoolsCsApp project.

Multi-Dimensional Array Data
The API_INT_FIFO Data Type contains the embedded multi-dimensional
arrays eventMask and filterMask. The wrapper flattens these and defines
these members as Private. To access them, use the accessor functions
GetEventMask, SetEventMask, GetFilterMask, and SetFilterMask.

The API_BC_MBUF and API_BC_MBUF_STRUCT Data Type contains the
embedded multi-dimensional array data. The wrapper flattens it and
defines this member as Private. To access it, use the accessor functions
GetData and SetData.

Class and Struct versions of Data Types
The BusTools API functions BC_ReadLastMessageBlock,
BM_ReadLastMessageBlock, and RT_ReadLastMessageBlock require
arrays of API_BC_MBUF, API_BM_MBUF, and API_RT_MBUF_READ
respectively. Therefore, the wrapper provides both a class and struct
version of each. The struct versions have "_STRUCT" at the end of their
names.

If you don't use the struct MBUF version when calling the above functions,
you will get an Execution Exception.

For an example of this, see the function BcUserTimerCallback in
RtTests.cs, in the BustoolsCsApp project.

BustoolsInterop User's Manual 8

CHAPTER 7

Application Notes

BustoolsCsApp
The primary code for this project can be found in the Form1 and RtTests
classes. Form1 implements a basic GUI, and RtTests contains code that sets
up and runs a 1553 card.

BustoolsInterop
The primary code for this project can be found in the Form1 class.
Although this is a Windows Forms project, the interop tests all take place in
the Form1 constructor, and do not actually implement any GUI operations.
Thus, the result is a blank form.

However, you can use the Visual Studio debugger to step through the
constructor code to see how interop works.

	Overview
	Revision
	Introduction

	The Reference Solution
	Description

	The API, Data, and Constants Classes
	The Bustools1553 Namespace
	The API Class
	The DataTypes Namespace
	The Constants Class

	Building and Running the Application
	Adding the Managed Wrapper to an Existing .NET Application
	Important Coding Differences when using .NET Wrappers
	IntFifo Creation and Updating
	Multi-Dimensional Array Data
	Class and Struct versions of Data Types

	Application Notes
	BustoolsCsApp
	BustoolsInterop

