
Example Name Description BusTools/1553-API Functions Used

example_auto_sync_mode.c This example shows how to setup the time tag auto sync mode. This mode synchronizes the

time tag to an external pulse. The example also sets up a dead man timer to detect if the

external 1PPS pulse does not occur on time. There is optional code to have the 1553 interface

board generate the 1PPS pulse instead of external 1PPS.

BusTools_API_OpenChannel,

BusTools_API_Close,

BusTools_SetInternalBus,

BusTools_BoardIsV6,

BusTools_SetV6TrigIn,

BusTools_SetV6TrigOut,

BusTools_DiscreteSetIO,

BusTools_DiscreteTriggerOut,

BusTools_DiscreteTriggerIn,

BusTools_TimeTagMode,

BusTools_ExtTrigIntEnable,

BusTools_BM_StartStop,

BusTools_BC_StartStop,

BusTools_RT_StartStop,

BusTools_RegisterFunction,

BusTools_BC_Init,

BusTools_BC_MessageAlloc,

BusTools_BC_MessageWrite,

BusTools_BC_MessageRead,

BusTools_TimeGetString,

BusTools_DiscreteWrite, BusTools_RT_Init,

BusTools_RT_CbufWrite,

BusTools_RT_MessageWrite,

BusTools_RT_AbufWrite,

BusTools_BM_Init,

BusTools_BM_MessageAlloc

example_bcrt_2ch.c This is a 2 CHANNEL example program that sets up one channel as a Remote Terminal and

another channel as Bus Controller on a multi-channel board.

The first channel is setup as RT1 with two subaddresses,SA1 RECEIVE and SA2

TRANSMIT. BusTools_RegisterFunction is called to implement a user callback function to

process the RT tranmit message data.

The second channel is setup as BC with a list of two messages, 1-R-1-32 and 1-T-2-32, in a

500ms minor frame. This BC list runs until stopped by user input. User can either display the

data for the 1-T-2-32 message or quit.

A interrupt callback function is setup by calling BusTools_RegisterFunction. The

rt_intFunction displays the RT data. The user can also switch between Transformer or direct

couple or dump the channels memory contents through command-line input.

This test requires a multi-channel board and either a physical connection between channel 1

and channel 2 or if you are using a QPCX-1553 or QPCI-1553 you can use the test bus.

BusTools_API_OpenChannel,

BusTools_API_Close,

BusTools_SetInternalBus,

BusTools_TimeTagMode,

BusTools_GetBoardType,

BusTools_SetTestBus, BusTools_SetVoltage,

BusTools_RT_StartStop,

BusTools_BC_StartStop,

BusTools_RegisterFunction,

BusTools_RT_MessageRead,

BusTools_TimeGetString,

BusTools_RT_Init,

BusTools_StatusGetString,

BusTools_RT_AbufWrite,

BusTools_RT_CbufWrite,

BusTools_RT_MessageWrite,

BusTools_BC_Init,

BusTools_BC_MessageAlloc,

BusTools_BC_MessageWrite,

example_bc_1Shot.c This console application shows how to setup BC messages that transact just once and then stop

the Bus Controller. This setup is referred to as a 1Shot message frame. Three one shot frames

are created and BusTools_BC_Start is used to start the BC at the beginning one of the selected

bus list.

BusTools_API_OpenChannel,

BusTools_API_Close,

BusTools_SetInternalBus,

BusTools_TimeTagMode,

BusTools_RT_StartStop,

BusTools_BC_Start,

BusTools_RegisterFunction,

BusTools_BC_Init,

BusTools_BC_MessageAlloc,

BusTools_BC_MessageWrite,

BusTools_BC_MessageRead,

BusTools_RT_Init,

BusTools_RT_CbufWrite,

BusTools_RT_MessageWrite,

BusTools_RT_AbufWrite,

BusTools_RegisterFunction

example_bc_aperiodic.c This example shows how to setup and run aperiodic messages. This example sets up a periodic

bus list running at 1hz and two aperiodic bust lists. The user can command either of the

aperiodic list to run at low or priorty or high priority.

BusTools_API_OpenChannel,

BusTools_API_Close,

BusTools_SetInternalBus,

BusTools_BC_AperiodicRun,

BusTools_BC_StartStop,

BusTools_RegisterFunction,

BusTools_BC_Init,

BusTools_BC_MessageAlloc,

BusTools_BC_MessageWrite,

BusTools_BC_MessageRead

example_bc_auto_incr.c This exampe sets up the Bus Controller, Remote Terminal and Bus Monitor and then enables

auto-increment on the Bus Controller message buffer 3. BusTools_BC_AutoIncrMessageData

is used setup the increment process. Message buffer 3 contains a 32-word receive command to

RT4 SA4. The last word in the command, data word word 32 increments each time the

message transacts.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_BM_Init

BusTools_BM_MessageAlloc

BusTools_RT_Init

BusTools_RT_CbufWrite

BusTools_RT_MessageWrite

BusTools_RT_AbufWrite

BusTools_BC_Init

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_BC_AutoIncrMessageData

BusTools_BM_StartStop

BusTools_RT_StartStop

BusTools_BC_StartStop

BusTools_DumpMemory

BusTools_RegisterFunction

BusTools_BC_MessageRead

BusTools_API_Close

example_bc_branch_on_data.c This application shows how to setup Message Scheduling, Frame-Start-Timing and

Conditional Branch 2.

Conditional Branch 2 branches based on the value in an on-board memory location allocated

using BusTools_MemoryAlloc. The application writes walues to this location to controlwhich

conditional messages transactions. There are 10 conditional messages. Each is run based on a

different bit-wise (1,2,4,8...) vaule written to the allocated memory address. By using the

data_mask and data_value the application can send any combination of conditional messages

by entering a value between 1 and 0x3ff. That value is written to the allocated memory

location. The Conditional Branch message evaluate the data at that test address to determine

whether to branch.

This is an alternate approach to apperiodic messaging, The application can select any

combination of messages to run after the periodic messages transact. Unlike aperiodic

messages youneed to ensure there is enough time in the frame after the periodic messages for

the selected conditional messages to run. All messages run in the current frame. After each

conditional message runs the corresponding bit at the test address is cleared so the message

only runs once per data update.

Note: This example run on both the new V6 firmware and older V4/V5 firmware. In the new

V6 firmware allocate 32 bit of memory rather than 16 bits used in the older firmware.

BusTools_API_OpenChannel,

BusTools_API_Close,

BusTools_SetInternalBus,

BusTools_BC_Init,

BusTools_BC_MessageAlloc,

BusTools_BC_MessageWrite,

BusTools_MemoryAlloc32,

BusTools_MemoryWrite2,

BusTools_MemoryAlloc,

BusTools_MemoryWrite,

BusTools_BoardIsV6,

BusTools_BC_StartStop,

BusTools_DumpMemory,

BusTools_RegisterFunction,

BusTools_BC_MessageRead,

example_bc_branch_on_status.c This example program demonstrates the use of Conditional Branches. There are several option

for branching. In this example there are two branches used, CONDITIONAL BRANCH and

CONDITIONAL BRANCH 3. CONDITIONAL BRANCH branches on data in the imeediately

preceeding message in the bus list, either command word, status word or data.

CONDITIONAL BRANCH 3 branches the same values, but the message buffer is specified in

the setup.

In this example, 8 message buffers are created. Message 1 is a CONDITIONAL BRANCH

that branches when the Status Request bit (SRQ) is set in the status response on message 0, the

immediately preceeding message. If the SRQ is set then Msg 2 transact otherwise it is skipped.

Message buffer 6 is a CONDITIONAL BRANCH 3 that branches if the data in the last data

word of Msg 4 is 0xabcd. If the data is set to 0xabcd then Msg 7 transact, otherwise it is

skipped.

BusTools_API_OpenChannel,

BusTools_API_Close,

BusTools_SetInternalBus,

BusTools_BC_Init,

BusTools_BC_MessageAlloc,

BusTools_BC_MessageWrite,

BusTools_BC_StartStop,

BusTools_BC_MessageRead,

BusTools_TimeGetFmtString,

BusTools_RegisterFunction

example_bc_cond_count.c This application shows how setup a BC messages and use conditional branch on count to run a

specific number of frames. There is also a branch on data in a previous message.

The BC sets up message buffer 1 as a Conditional Branch 3. That branch looks at the data in

the third data word of the previous message. If the third data word equals 0xA002, the branch

skips the next message. In this example that condition is always TRUE and the next message

in the bus list, RT3 SA3 WC3 TX is never transmitted. You can alter the data and see how

that affects the branch.

Message buffer 5 is setup as a Conditional Branch 2 that is set to branch on the 10th

occurrence. Because of the way the firmware decrements the branch count, it is set to n-1. In

this case count is set to 9 (10-1). The count is decremented each time the branch executes.

When it hits to zero the branch occurs. In the example the non-branching false condition is a

nop message setting the end-of-frame with the next-message pointing to the frame start at

message buffer 0. When the branch does executes the message buffer contains a BC LAST

command that stops the Bus Controller. This setup executes the frame 10 times then halts the

BC. You change the two count values and see how it alters the execution.

BusTools_API_OpenChannel,

BusTools_SetInternalBus,

BusTools_BC_Init,

BusTools_BC_MessageAlloc,

BusTools_BC_MessageWrite,

BusTools_BC_StartStop,

BusTools_BC_MessageRead,

BusTools_BC_IsRunning2,

BusTools_RegisterFunction

example_bc_data_transfer.c This example program sets up a Bus Controller to transfer a block of data to an RT. This

approach could be used to transfer any amount of data; in this case 1024 words are transferred.

An interrupt event signals when the BC message completes so we can write the next buffer of

data to the BC message buffer. A Conditional Branch on count is used to transfer 32 messages

of 32 words (32 x 32 = 1024). When the transfer is complete the Bus Controller halts and the

example exits. This program also uses BusTools_BC_MessageUpdate to update only the data

portion of the Bus Controller message buffer.

BusTools_API_OpenChannel,

BusTools_SetInternal, Bus,

BusTools_BC_Init,

BusTools_BC_MessageAlloc,

BusTools_BC_MessageWrite,

BusTools_BC_StartStop,

BusTools_BC_MessageRead,

BusTools_BC_MessageUpdate,

BusTools_RegisterFunction,

BusTools_API_Close

example_bc_data_wrap.c This example shows how to wrap transmit and receive buffer so that data from a BC transits

command can send the data from a BC receive command. In this example the data buffer from

the first message (0) is linked to the second message (1) by reading the data buffer address in

buffer 0, the transmit command, and over-writing the data buffer address in the second buffer

(1) with the transmit buffer address. That way the data from the transmit command is used by

the receive command.

BusTools_API_OpenChannel,

BusTools_SetInternalBus,

BusTools_TimeTagMode,

BusTools_BC_Init,

BusTools_BC_MessageAlloc,

BusTools_BC_MessageWrite,

BusTools_BC_MessageGetaddr,

BusTools_BoardIsV6,

BusTools_MemoryRead2,

BusTools_MemoryWrite2,

BusTools_MemoryRead,

BusTools_MemoryWrite,

BusTools_BC_StartStop,

BusTools_RegisterFunction,

BusTools_BC_MessageRead,

BusTools_TimeGetFmtString,

BusTools_API_Close

example_bc_deadman_timer.c This example shows how to configure a watchdog timer to stop the Bus Controller if the host

does not reset the timer.

This example uses a Condition Branch on count (CONDITION2) as the timer. The Conditional

Branch is setup to branch when the count decrements to 0. The count value is decremented

each time the branch executes. The branch command is a BC_CONTROL_HALT that stops

the Bus Controller. Otherwise the frame keeps running. To keep the branch from ever

executing the halt, the host must reset the counter value to prevent it from reaching 0. To do

this, the example gets the address of the BC buffer containing the branch command and resets

the count value by writing the initial count value back into the count register thus restarting the

down-count.

This example runs until the user enters the kill command from the console. Then the count

value is no longer reset and the Bus controller halts. Two callback functions are used. One for

Bus Controller messages prints the message data to the console. The other is for the

conditional branch. This callback resets the counter value. See how altering the count value

affects the timer.

BusTools_API_OpenChannel,

BusTools_SetInternalBus,

BusTools_TimeTagMode,

BusTools_BC_Init,

BusTools_BC_MessageAlloc,

BusTools_BC_MessageWrite,

BusTools_BC_MessageGetaddr,

BusTools_MemoryRead2,

BusTools_BoardIsV6,

BusTools_BC_StartStop,

BusTools_RegisterFunction,

BusTools_BC_MessageRead,

BusTools_TimeGetFmtString,

BusTools_MemoryWrite2,

BusTools_MemoryWrite

example_bc_error_inj.c This example program sets up a Bus Controller message list containing two messages, 1-R-1-

32 and 2-T-2-32, in a 20ms minor frame. This BC list runs until stopped by user input. Error

are inject into the command or data words of the two messages.

The example injects a PARITY error on the command word either for 1-R-1-32 or 2-T-2-32. It

also inject a parity error into the first data of the receive command. Notice the effect of the

error by monitoring with an external Bus Analyzer like BusTools/1553. When a parity error is

injected on a command word it becomes an invalid command the Analyzer (monitor) ignores

the message. If error is injected on the data word then the command is valid and the monitor

will show errors like invalid word and parity error.

BusTools_API_OpenChannel,

BusTools_SetInternalBus,

BusTools_BC_Init,

BusTools_BC_MessageAlloc,

BusTools_BC_MessageWrite,

BusTools_BC_StartStop,

BusTools_EI_EbufWriteENH,

BusTools_API_Close

example_bc_join.c Channel Sharing allows multiple applications to run on a single 1553 channel. Channel sharing

requires that only one application initialize a channel. That application must share the channel

by calling BusTools_API_ShareChannel. Other application can join the shared channel by

calling BusTools_API_JoinChannel. There can be only one Bus Controller application, one

Bus Monitor application and one Remote Terminal application per channel. This example

Shows a BC application joining an already initialized channel.

BusTools_API_JoinChannel,

BusTools_SetInternalBus,

BusTools_TimeTagMode,

BusTools_BC_Init,

BusTools_BC_MessageAlloc,

BusTools_BC_MessageWrite,

BusTools_BC_MessageRead,

BusTools_TimeGetString,

usTools_RegisterFunction,

BusTools_BC_StartStop,

BusTools_API_QuitChannel

example_bc_message_read_types.c This example program shows how to program the Bus Controller to run a multiple minor

frames and to demonstrate programming all of the message types available to the Bus

Controller. The example initializes the channel and sets it for external bus. Following those

initialization steps it initializes the Bus Controller and builds two minor frames. There are

examples of each of the BC message in the frames.

BusTools_API_OpenChannel,

BusTools_TimeTagMode,

BusTools_SetInternalBus,

BusTools_SetBroadcast, BusTools_BC_Init,

BusTools_BC_MessageAlloc,

BusTools_BC_MessageWrite,

BusTools_BC_MessageRead,

BusTools_BoardIsV6,

BusTools_TimeGetFmtString,

BusTools_RegisterFunction,

BusTools_BC_StartStop,

BusTools_API_Close

example_bc_message_types.c This example program shows how to program the Bus Controller to run a multiple minor

frames and to demonstrate programming all of the message type available to the Bus

Controller. The example initializes the Bus Controller channel. Then it sets the channel for

external bus. Following those initialization steps it initializes the Bus Controller and builds

two minor frames. There are examples of each of the BC message in the frames.

BusTools_API_OpenChannel,

BusTools_SetInternalBus,

BusTools_SetBroadcast, BusTools_BC_Init,

BusTools_BC_MessageAlloc,

BusTools_BC_MessageWrite,

BusTools_BoardIsV6,

BusTools_BC_StartStop,

BusTools_API_Close

example_bc_msg_blk_read.c This example program shows how to program the Bus Controller to run a simple three message

minor-frame. The example initializes the channel the Bus Controller is running on. Then sets

the channel for external bus. Following those initialization steps it initializes the Bus

Controller and builds a simple 3-message frame. The messages in the frame are linked

together and the frame will run continually until stopped by the user.

This example also shows how to process the messages using the function

BusTools_BC_ReadLastMessageBlock. This function parses the interrupt queue to determine

the BC messages that have transacted since the last call. In order for a BC message to record it

must have the BC_CONTROL_INTERRUPT set and the BC initialization must define an

interrupt condition like BT1553_INT_END_OF_MESS. This processing differs from

BusTools_RegisterFunction in that your application must provide a timing loop to call

BusTools_BC_ReadLastMessageBlock periodically. The timing must set so the BC messages

(and other messages that may be recorded in the interrupt queue) do not overwrite unprocessed

entries. This example uses a 50 millisecond delay.

This application use the Windows function kbhit to break out of timing loop. If using this

example on non-Windows systems, you will need to provide a kbhit function.

BusTools_API_OpenChannel,

BusTools_SetInternalBus,

BusTools_TimeTagMode,

BusTools_BC_Init,

BusTools_BC_MessageAlloc,

BusTools_BC_MessageWrite,

BusTools_BC_StartStop,

BusTools_BC_ReadLastMessageBlock,

BusTools_BoardIsV6,

BusTools_TimeGetFmtString,

BusTools_API_Close

example_bc_msg_read.c This example program shows how to program the Bus Controller to run a simple three message

minor-frame. The example initializes the channel and sets the channel for external bus.

Following those initialization step it initializes the Bus Controller and builds a simple 3-

message frame. The messages in the frame are linked together and the frame will run

continually until stopped by the user. A user callback function is set up by using the function

BusTools_RegisterFunction. The user function is invoked each time the registered interrupt

event is found in the channels interrupt queue. In this example the callback function is

registered for callback on EVENT_BC_MESSAGE. Those events occur on BC message that

have interrupt enabled (BC_CONTROL_INTERRUPT. The user callback function then

process the data in each message.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_TimeTagMode BusTools_BC_Init

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_BC_StartStop

BusTools_RegisterFunction

BusTools_BC_MessageRead

BusTools_BoardIsV6

BusTools_TimeGetFmtString

BusTools_API_Close

example_bc_msg_run.c This example program shows how to program the Bus Controller to run a simple three message

minor-frame. The example initializes the channel the Bus Controller is running on. Then sets

the channel for external bus. Following those initialization step it initializes the Bus Controller

and builds a simple 3-message frame. The message in the frame are linked together and the

frame will run continually until stopped by the user.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_BC_Init

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_BC_StartStop

BusTools_API_Close

example_bc_msg_sched.c This application shows how to setup the bus Controller for Message Scheduling. That is a

technique that allows the user to schedule message at differing rates in the major frame. In this

example, messages going out on every frame, every other frame, and every fifth frame. The

frame rate is set at 1 Hz, so the message traffic can be visually seen on an analyzer. When

using Message Scheduling the user programs the start-frame and the repeat rate for each

message. A message with a start frame of one and repeat rate of one goes in every frame. A

start frame of 1 and repeat rate of 2 causes the message to transact in every other frame. By

setting the base frame rate and the start frame and repeat rate for each message the user can

control the rate at which the messages in the major frame transact. You can vary frame rate and

the start-frame and repeat rates of the messages in this example and see how the changes affect

message traffic.

BusTools_API_OpenChannel

BusTools_GetFWRevision

BusTools_SetInternalBus

BusTools_RT_Init

BusTools_RT_CbufWrite

BusTools_RT_MessageWrite

BusTools_RT_AbufWrite

BusTools_BC_Init

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_BC_MessageRead

BusTools_TimeGetString

BusTools_RegisterFunction

BusTools_BC_StartStop

BusTools_RT_StartStop

BusTools_API_Close

example_bc_multi_buffer.c This example shows how to initialize the Bus Controller with multiple data buffers. This

example requires Firmware version 6.0 or greater and BusTools/1553-API version 8.0 or

greater. Previous F/W and API versions only support one or two data buffers. When using the

Multiple BC buffer option you can create a varying number of data buffers for each BC

message.

This function initializes the board and steps through the process of enabling, creating, filling,

and processing the multiple buffers. Three messages are created with 10, 15, and 5 data

buffers. An interrupt callback function is registered using BusTools_RegisterFunction. In that

callback the data from the buffer is optionally printed and the receive command (RT4) data is

incremented to show how to update the data.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_TimeTagMode

BusTools_BC_Init

BusTools_BC_MessageBlockAlloc

BusTools_BC_MessageWrite

BusTools_BC_DataBufferWrite

BusTools_BC_MessageBufferRead

BusTools_BC_DataBufferUpdate

BusTools_BC_ReadDataBuffer

BusTools_TimeGetString

BusTools_RegisterFunction

BusTools_BC_StartStop

BusTools_API_Close

example_bc_noop.c This example shows how to NOOP and un-NOOP a message. When a message is NOOPed, It

does not transact. The firmware skips over the message as if it were not in the bus list. A

single minor frame is created with three messages in the frame. The Second message in the

bus list (message 1) is created as a Noop message (BC_CONTROL_MSG_NOP). That means

it created as a BC message buffer but set in the NOOP state. When the frame runs only

message 0 and 2 transact. The user can toggle message 1 ON or OFF by entering 'U' or 'N" to

Un-NOOP or NOOP the message. The function BusTools_BC_MessageNoop is called change

the NOOP setting for message 1. You can use BusTools_BC_MessageNoop on any BC

message created with BC_CONTORL_MESSAGE or BC_CONTROL_MSG_NOP.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_TimeTagMode

BusTools_BC_Init

BusTools_BC_MessageBlockAlloc

BusTools_BC_MessageWrite

BusTools_BC_MessageNoop

BusTools_BC_StartStop

BusTools_RegisterFunction

BusTools_BC_MessageRead

BusTools_BoardIsV6

BusTools_TimeGetFmtString

BusTools_API_Close

example_bc_options.c This is anThis is an example program that uses several Bus Controller options to configure a

bus list. The options used are Frame-start timing, Message Scheduling, retries and Interrupts.

There are two callback functions used. One is for the specific BC message in the bus list

excluding the sync mode code. The other callback process the sync mode code. Retries on no-

response or busy are enable on several of the messages. Frame start timing use the gap time as

the message delay time from the start of the frame. Message scheduling is used to setup the

message in the different frames. Some messages transact at 20Hz, some at 10Hz some at 2 Hz

and the sync mode code runs at 1Hz. example program that uses several Bus Controller options

to configure a bus list. The options used are Frame-start timing, Message Scheduling, retries

and Interrupts. There are two callback functions used. One is for the specific BC message in

the bus list excluding the sync mode code. The other callback process the sync mode code.

Retries on no-response or busy are enable on several of the messages. Frame start timing use

the gap time as the message delay time from the start of the frame. Message scheduling is used

to setup the message in the different frames. Some messages transact at 20Hz, some at 10Hz

some at 2 Hz and the sync mode code runs at 1Hz.

BusTools_API_OpenChannel

BusTools_GetFWRevision

BusTools_SetInternalBus

BusTools_TimeTagMode

BusTools_BC_Init

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_BC_RetryInit

BusTools_RegisterFunction

BusTools_BC_StartStop

BusTools_BC_MessageRead

BusTools_BoardIsV6

BusTools_TimeGetFmtString

BusTools_API_Close

example_bc_retry.c This example demonstrates enabling retries on Bus Controller messages. Enabling retries lets

the hardware automatically resend a message if the retry condition occurs. In the example the

Bus Controller automatically resends the message if a no-response is detected on a retry

enabled message or if the RT responds with Busy or Message Error.

In order to enable retries you need to configure the Bus Controller to retry by setting the retry

condition(s) in BusTools_BC_Init. Once a condition is programmed, each Bus Controller

message can then be set to retry. In this example retries are set for message 1 and 2 (0-based)

in the bus list. Furthermore, up to eight retries can be programmed by calling

BusTools_BC_RetryInit. That function allows programming up to eight retries on either the

same or alternate bus. The same and alternate bus designations are from the initial bus setting

of the message. For example, if the message transacts Bus A the alternate bus is Bus B. In

addition to setting up retries the example also sets up a callback function on a retry.

BusTools_API_OpenChannel

BusTools_GetFWRevision

BusTools_SetInternalBus

BusTools_BC_Init

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_BC_RetryInit

BusTools_BC_StartStop

BusTools_RegisterFunction

BusTools_BC_MessageRead

BusTools_BoardIsV6

BusTools_TimeGetFmtString

BusTools_API_Close

example_bc_rt_bm.c This console application shows how to configure the Remote Terminal, Bus Controller and

Bus Monitor and set up interrupt on BC, RT, BM messages. The RT and BC callback function

change the data for Transmit and Receive commands. The Bus Monitor callback displays the

data.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_BM_Init

BusTools_BM_MessageAlloc

BusTools_RT_Init

BusTools_RT_CbufWrite

BusTools_RT_MessageWrite

BusTools_RT_AbufWrite

BusTools_BC_Init

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_BM_StartStop

BusTools_RT_StartStop

BusTools_BC_StartStop

BusTools_RT_MessageRead

BusTools_BM_MessageRead

BusTools_BC_MessageReadData

BusTools_BC_MessageUpdate

BusTools_BC_ControlWordUpdate

BusTools_BC_MessageUpdateBuffer

BusTools_RegisterFunction

BusTools_TimeGetString

BusTools_DumpMemory

BusTools_ReadBoardTemp

BusTools_API_Close

example_bc_rt_broadcast.c This example shows how to setup broadcast for BC and RT. It also show the Remote Terminal

processes Broadcast messages.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_SetBroadcast BusTools_RT_Init

BusTools_RT_CbufWrite

BusTools_RT_CbufbroadWrite

BusTools_RT_MessageWrite

BusTools_RT_AbufWrite

BusTools_BC_Init

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_RT_StartStop

BusTools_BC_StartStop

BusTools_RegisterFunction

BusTools_RT_MessageRead

BusTools_API_Close

example_bc_start_frame.c This example application shows how to configure the Bus Controller for an initial frame that

runs once then run a periodic frame. The application uses BusTools_BC_Start to start the

initial frame at message 40. After that the frame starting at message zero (0) runs.

This example also shows how to set an interrupt on minor-frame-overflow. A minor-frame-

overflow occurs when the messages in a minor-frame take longer than the programmed frame-

time to transact. When this occurs, messages exceeding the frame-time are suppressed and the

new frame starts. In this example the frame rate is set for 1Hz (1000000). All the messages

transact. If you change the frame rate to 1000 Hz (1000), a minor-frame overflow occurs and

the last two messages in the frame are suppressed. The minor-frame-overflow interrupt

callback increments a counter each time it runs. the number of overflow events are printed out

at the end of this example.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_BC_Init

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_BC_Start

BusTools_RegisterFunction

BusTools_BC_MessageBufferRead

BusTools_TimeGetString

BusTools_BC_DataBufferUpdate

BusTools_API_Close

example_bc_trigger_oneshot.c This example program demonstrates how to start the Bus Controller using a trigger input. The

example sets up a simple BC message list with 1-R-1-32 and 2-T-2-32, in a 500ms minor

frame. This BC list runs until stopped by user input. Data is automatically displayed for 1-R-1-

32 and 2-T-2-32. The user hits Enter to quit, shutdown the application and exit.

 BusTools_BC_Trigger is used to setup a 1shot trigger that starts the Bus Controller running.

After calling BusTools_BC_StartStop the BC waits for an external trigger input before

running. The trigger can be from an external trigger source or generated by the board. If the

trigger source in the board you must wrap discrete 7 and 8 together.

 Note: not all boards have discrete channels or are configure with the discrete 7 and 8. You

will need to check the configuration of the board installed to make sure that discrete channels

are available.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_BC_Init

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_BC_Trigger

BusTools_RegisterFunction

BusTools_BoardIsV6

BusTools_SetV6TrigOut

BusTools_SetV6TrigIn

BusTools_DiscreteWrite

BusTools_DiscreteSetIO

BusTools_DiscreteTriggerOut

BusTools_DiscreteTriggerIn

BusTools_BC_StartStop

BusTools_BC_MessageRead

BusTools_TimeGetFmtString

BusTools_API_Close

example_bc_trigger_user.c This example application shows BC Triggering using the BC_TRIGGER_USER option. In this

option the user controls how the BC frames run by adding BC_CONTROL_LAST to stop the

Bus Controller. Each time you stop the Bus Controller using BC_CONTROL_LAST a trigger

input is needed to restart. You can have one or more frames transacting off each trigger. This

example creates six frames. The first four frames each start on a trigger input. The last two

frames combined. The fifth frame starts on a trigger. The sixth frame runs after the normal

frame delay, then stop when the BC_CONTROL_LAST buffer transacts. The list loops back

to the first frame requiring a trigger to start.

The application provides an option for internally generated triggers or an external user-

supplied trigger. If you select the internal trigger, you will need to connect discrete7 and 8

together. Not all boards have these discrete channels available so check the board's

configuration.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_TimeTagMode

BusTools_SetV6TrigOut

BusTools_SetV6TrigOut

BusTools_DiscreteWrite

BusTools_DiscreteSetIO

BusTools_DiscreteTriggerOut

BusTools_DiscreteTriggerIn

BusTools_BC_Init BusTools_BC_Trigger

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_BC_StartStop

BusTools_ExtTriggerOut

BusTools_DumpMemory

BusTools_BC_StartStop

BusTools_RegisterFunction

BusTools_BC_MessageRead

BusTools_BoardIsV6

BusTools_TimeGetFmtString

BusTools_API_Close

example_bit.c This example program that initializes a channel and runs the Internal Built-In-Test and the

Cable Wrap Test, then exits.

BusTools_API_OpenChannel

BusTools_BIT_InternalBit

BusTools_BIT_CableWrap

BusTools_API_Close

example_bm_filter_messages.c This example program sets up a Bus Monitor to record the message traffic to a file. The user is

prompted for the number of messages to capture. The program then captures those messages

and writes them to a file. This is a version of example_bm_recorder that demonstrates message

filtering. This program only captures messages for RT1 SA2 TX.

This is a monitor only example. It needs something to generating bus traffic that includes a

RT1 SA2 TX message to capture data.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_BM_Init

BusTools_GetBoardType

BusTools_BM_FilterWrite

BusTools_BM_MessageAlloc

BusTools_BM_StartStop

BusTools_BM_MessageReadBlock

BusTools_RegisterFunction

BusTools_API_Close

example_bm_process_messages.c This example program sets up a Bus Monitor to process each message transacted on the 1553

bus. The example shows how to use BusTools_RegisterFunction to setup a user-callback

function to processes individual Bus Monitor Messages. It also shows how to write a user-

callback that processes each Bus Monitor message. In the callback function the Bus Monitor

message data is displayed on the console. This is a monitor only example; you will need to

connect to a 1553 bus with traffic to capture messages.

BusTools_API_OpenChannel

BusTools_BM_Init

BusTools_SetInternalBus

BusTools_GetBoardType

BusTools_BM_MessageAlloc

BusTools_BM_StartStop

BusTools_RegisterFunction

BusTools_BM_MessageRead

BusTools_API_Close

example_bm_process_msg_blk.c This example sets up a Bus Monitor to process each Bus Monitor message transacted. This

example also shows how to process the messages using the function

BusTools_BM_ReadLastMessageBlock. This function parses the interrupt queue to determine

the BM messages that have transacted since the last call. For a BM message to record the BM

initialization must define an interrupt condition like BT1553_INT_END_OF_MESS. This

processing differs from using BusTools_RegisterFunction in that your application must

provide a timing loop to call BusTools_BM_ReadLastMessageBlock periodically. The timing

must be set so the BM messages (and other messages that may be recorded in the interrupt

queue do not overwrite unprocessed entries. This example uses a 50 millisecond delay.

This application use the Windows function kbhit to break out of timing loop. If using this

example on non-Windows systems, you will need to provide a kbhit function.

BusTools_API_OpenChannel

BusTools_BM_Init

BusTools_SetInternalBus

BusTools_GetBoardType

BusTools_BM_MessageAlloc

BusTools_BM_StartStop

BusTools_BM_ReadLastMessageBlock

BusTools_API_Close

example_bm_recorder.c This example program sets up a Bus Monitor to record the message traffic to a file. The user is

prompted for the number of messages to capture. The program then captures those messages

and writes them to a file.

Since this is a monitor only example, you will need something else generating bus traffic so

there will be messages to capture.

BusTools_API_OpenChannel

BusTools_BM_Init

BusTools_SetInternalBus

BusTools_GetBoardType

BusTools_BM_MessageAlloc

BusTools_BM_MessageReadBlock

BusTools_BM_StartStop

BusTools_RegisterFunction

BusTools_API_Close

example_bm_share.c This application demonstrates how to initialize a channel and the share the channel so other

applications can use that channel. This application initializes and shares the channel. It then

configures and runs a Bus Monitor. This allows separate Bus Controller and Remote Terminal

applications to join this channel.

BusTools_API_OpenChannel

BusTools_API_ShareChannel

BusTools_SetInternalBus

BusTools_BM_Init

BusTools_BM_MessageAlloc

BusTools_RegisterFunction

BusTools_BM_StartStop

BusTools_BM_MessageRead

BusTools_API_QuitChannel

BusTools_API_Close

example_bm_trig_start_stop.c This example shows how to enable Bus Monitor start trigger and stop trigger using the

function BusTools_BM_TriggerWrite. A start trigger specifies a condition or set of conditions

that must occur before the Bus Monitor starts processing data. The stop trigger defines a

condition of set of conditions that must occur to stop the Bus Monitor processing. When a start

trigger is set it prevent Bus Monitor data from being recorded in the interrupt queue. A stop

trigger disables the Bus Monitor message from going into the interrupt queue. You can still

record all the message traffic.

In this example the Bus Monitor is configured to start only after a command is sent to RT1.

All traffic transacting prior is not processed. Once started the Monitor stops processing

messages when a command word with RT22 occurs when armed first by a command word to

RT2.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_BM_Init

BusTools_BM_MessageAlloc

BusTools_BM_TriggerWrite

BusTools_RT_Init

BusTools_RT_CbufWrite

BusTools_RT_CbufWrite

BusTools_RT_AbufWrite

BusTools_BC_Init

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_RegisterFunction

BusTools_BM_MessageRead

BusTools_TimeGetFmtString

BusTools_BC_StartStop

BusTools_RT_StartStop

BusTools_BM_StartStop

BusTools_RegisterFunction

BusTools_API_Close

example_bm_trgout.c This example shows how to setup the Bus Monitor to generate an external trigger out when it

records a specific message. In this example the Bus Monitor and optionally the BC and RT are

configured. The Bus Monitor will generate an external trigger (trigger-out on discrete 7) when

it records a BC message to RT 8. This example also routes the output trigger back to the input

trigger (set up on discrete 8) and sets up an interrupt on external trigger. This setup generates

an output trigger and captures it as an input trigger for display. In order for this set up to work

you need to physically connect the discrete7 to discrete 8. Discrete and triggers vary between

boards and this setup may not run on your board variant. Please refer to the “MIL-STD-1553

Hardware Installation Guide” for details about triggers and discrete channels available on the

different 1553 products.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_ExtTrigIntEnable

BusTools_BM_Init

BusTools_BM_MessageAlloc

BusTools_BM_TriggerWrite

BusTools_SetV6TrigOut

BusTools_SetV6TrigIn

BusTools_DiscreteWrite

BusTools_DiscreteSetIO

BusTools_DiscreteTriggerOut

BusTools_DiscreteTriggerIn

BusTools_RT_Init

BusTools_RT_CbufWrite

BusTools_RT_MessageWrite

BusTools_RT_AbufWrite

BusTools_BC_Init

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_BC_StartStop

BusTools_RT_StartStop

BusTools_BM_StartStop

BusTools_DumpMemory

BusTools_RegisterFunction

BusTools_API_Close

example_dbca.c This application shows how to setup Dynamic Bus Controller allocation for both the Remote

Terminal and the Bus Controller. This example uses two channels, one as the initial Bus

Controller and the other as the initial Remote Terminal. The RT channel also configures a Bus

Controller, but it is not started. In this example the active BC is initialized to send a bus list

using RTs 2, 4 and 6. There is also an aperiodic message to send a mode code 0 to RT1. If

RT1 accepts the DBCA by setting the DBA bit in the Status word, the Bus Controller halts.

The inactive BC, configured by the RT channel, has a bus list to RTs 12, 14, and 16. RT1 is

setup to accept the DBCA Mode Code 0. It automatically starts the Bus Controller. User input

from the console sends the aperiodic Mode Code 0 to RT1. Once that transacts, the initial BC

is halted and the RT side BC takes over.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_RT_Init

BusTools_RT_CbufWrite

BusTools_RT_MessageWrite

BusTools_RT_AbufWrite

BusTools_BC_Init

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_RT_StartStop

BusTools_BC_StartStop

BusTools_BC_AperiodicRun

BusTools_RT_MessageRead

BusTools_RegisterFunction

BusTools_API_Close

example_ext_trig.c This application shows how to setup interrupts on external trigger. In addition it shows how to

setup discrete for input and output triggers. This test requires a wrap connector between

discrete 7 and discrete 8 on the D50 connector. The test generates a output trigger and wraps

output on discrete 7 to the input on discrete 8. The input trigger generates an interrupt.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_SetVoltage BusTools_BM_Init

BusTools_BM_MessageAlloc

BusTools_BM_StartStop

BusTools_SetV6TrigOut

BusTools_SetV6TrigIn

BusTools_DiscreteWrite

BusTools_DiscreteSetIO

BusTools_DiscreteTriggerOut

BusTools_DiscreteTriggerIn

BusTools_ExtTrigIntEnable

BusTools_RegisterFunction

BusTools_BM_StartStop

BusTools_ExtTriggerOut

BusTools_TimeTagRead

BusTools_API_Close

example_irig1.c This test program demonstrates the setup of the IRIG-B output and input. This program just

configures IRIG for EXTERNAL or INTERNAL source, sets the IRIG the current time/date

and then loops 20 times reading and displaying the time every second. This REQUIRES a

board with the IRIG option. The part number should include a 'W', which indicates IRIG. For

example: QPCX-1553-4MW. Use BusTools_BoardHasIRIG to find out if you have an IRIG

enabled board.

BusTools_API_OpenChannel

BusTools_BoardHasIRIG

BusTools_BM_Init BusTools_IRIG_Config

BusTools_IRIG_Calibration

BusTools_IRIG_Valid

BusTools_IRIG_SetTime

BusTools_TimeTagMode

BusTools_TimeTagRead

BusTools_API_Close

example_rev.c This example program initializes a board and displays version information and general board

information.

BusTools_GetDevInfo

BusTools_StatusGetString

BusTools_API_OpenChannel

BusTools_GetBoardType

BusTools_ReadBoardTemp

BusTools_GetRevision

BusTools_GetFWRevision

BusTools_BoardIsV6

BusTools_BoardIsMultiFunction

BusTools_GetCSCRegs

BusTools_GetChannelCount

BusTools_BoardHasIRIG

BusTools_GetSerialNumber

BusTools_MemoryAvailable

BusTools_API_Close

example_rt_auto_wrap.c This application shows how to automatically wrap RT receive and transmit messages buffers.

When transmit and receive message buffers are wrapped the RT transmits the data from the

previous receive command.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_SetVoltage BusTools_BC_Init

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_RT_Init

BusTools_RT_CbufWrite

BusTools_RT_MessageWrite

BusTools_RT_AbufWrite

BusTools_RegisterFunction

BusTools_BC_MessageRead

BusTools_RT_StartStop

BusTools_BC_StartStop

BusTools_API_Close

example_rt_buffer_switch.c The example demonstrates how to setup the Remote Terminal to manually switch between two

RT message buffers. The RT is initialized with two message buffer per RT/SA/TX/RX

combination. Then, using BusTools_RT_MessageGetaddr and BusTools_MemoryWrite2 the

RT message buffer linked list is altered to have each buffer point to its address instead of the

next buffer in the list. Instead of looping through the message buffer the RT uses only a single

buffer. The user must write the address of the message they want to run into the RT control

Buffer.

This example sets up a RT3 SA3 TX with 2 buffers. Then manually changes the message

buffer linking so only a single buffer is used. By entering 0 or 1 at the command prompt the

user can switch between buffer 0 (data = 0x1111) and buffer 1 (data = 0x2222)

This example shows this process for both the V6 and V4/5 firmware designs. The high level

API hides the underlying design differences in the firmware. When directly accessing memory

the user needs to understand the memory layout for the firmware they are using. Refer to the

"MIL-STD-1553 Universal Core Architecture Reference Manual" for the V4/5 firmware and

the "MIL-STD-1553 Enhanced Universal Core Architecture (UCA32) Local Processing Unit

(LPU) Reference Manual for V6 firmware. Also keep in mind that V6 firmware uses 32-bit

addressing while V4/5 uses 16-bit addressing.

When running this example it you a dump the board's memory by typing 'd' or 'D'. Reviewing

the memory dump will help follow the memory manipulations in this example.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_BC_Init

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_RT_Init

BusTools_RT_CbufWrite

BusTools_RT_MessageWrite

BusTools_RT_AbufWrite

BusTools_RT_MessageGetaddr

BusTools_BoardIsV6 BusTools_RamAddr

BusTools_RelAddr

BusTools_MemoryWrite2

BusTools_GetAddr

BusTools_MemoryRead2

BusTools_RT_MessageRead

BusTools_RegisterFunction

BusTools_RT_StartStop

BusTools_BC_StartStop

BusTools_DumpMemory

BusTools_API_Close

example_rt_ei_late_rsp.c This example program sets up RT1 with two subaddresses, SA1 RECEIVE and SA2

TRANSMIT. It also demonstrates how to inject errors into an RT message. In this case, we

inject a LATE RESPONSE ERROR. The user can specify the response time from 7-31us.

This can be done for SA1 RECEIVE or SA2 TRANSMIT.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_RT_Init

BusTools_RT_AbufWrite

BusTools_RT_CbufWrite

BusTools_EI_EbufWriteENH

BusTools_RT_MessageWrite

BusTools_RT_StartStop

BusTools_API_Close

example_rt_ei_parity.c This example program sets up a simple RT1 with two subaddresses, SA1 RECEIVE and SA2

TRANSMIT. It also demonstrates RT error injection. In this case, it creates a PARITY

ERROR. This can be done for SA1 RECEIVE (on STATUS word) or on SA2 TRANSMIT

(on STATUS or DATA words).

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_RT_Init

BusTools_RT_AbufWrite

BusTools_RT_CbufWrite

BusTools_EI_EbufWriteENH

BusTools_RT_MessageWrite

BusTools_RT_StartStop

BusTools_API_Close

example_rt_extended_status.c This example shows how to configure a Remote Terminal and enable Extended Status updates.

Under normal 1553 operation the status returned by the RT is for all Sub-addresses and

transmit and receive buffer. BusTools_RT_AbufWrite sets the status response for the RT and

enable extended status for a RT. Using Extended Status mode the RT can set the status word

for each Sub-address, Transmit, Receive and buffer for the RT.

 In this example the RTs are set up with two buffers per RT/SA/TX/RX combination. For RT 3

Transmit and RT 4 receive the second buffer is set to respond with updated status. RT 3

responds with Busy (BSY) and RT 4 responds with Message Error (ME). This causes the

status word for those two messages to toggle between the RT message status and the extended

status programmed by BusTools_RT_MessageWriteStatusWord. To use Extended Status set

the Extended Status enable in the ‘inhibit terminal flag’ parameter in call to

BusTools_RT_AbufWrite.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_RT_Init

BusTools_RT_CbufWrite

BusTools_RT_MessageWrite

BusTools_RT_AbufWrite

BusTools_RT_MessageWriteStatusWord

BusTools_BC_Init

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_RegisterFunction

BusTools_RT_StartStop

BusTools_BC_StartStop

BusTools_BC_MessageRead

BusTools_TimeGetFmtString

BusTools_API_Close

example_rt_join.c This example shows how an application joins an already initialized channel. This function

demonstrates a simple RT application. RTs 1 - 8 are programmed and a callback function is

setup to process RT message in the interrupt queue.

This function requires that the channel joined already be initialize and shared by another

application. The user can run this example with example_bm_share and example_bc_join.

Joining a shared channel allows individual Remote Terminal, Bus Monitor and Bus Controller

applications to run off a single channel.

BusTools_API_JoinChannel

BusTools_RT_Init

BusTools_RT_CbufWrite

BusTools_RT_MessageWrite

BusTools_RT_AbufWrite

BusTools_RegisterFunction

BusTools_TimeTagRead

BusTools_RT_MessageRead

BusTools_TimeGetString

BusTools_RT_StartStop

BusTools_API_QuitChannel

example_rt_mc17.c Demonstrates how to process Mode Code 17, Sync with Data. BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_TimeTagMode

BusTools_GetRevision

BusTools_GetFWRevision

BusTools_BC_Init

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_RT_Init

BusTools_RT_CbufWrite

BusTools_RT_MessageWrite

BusTools_RT_AbufWrite

BusTools_RegisterFunction

BusTools_BC_StartStop

BusTools_RT_StartStop

BusTools_DumpMemory

BusTools_RT_MessageRead

BusTools_BC_MessageRead

BusTools_API_Close

example_rt_mode_code.c This example shows multi-buffering of mode code data. Uses Mode Code 17, synchronize

with data and Mode code 19, Transmit Bit Word. This example shows how to setup data for

Mode codes if that are in the same bus list.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_TimeTagMode

BusTools_RT_Init

BusTools_RT_CbufWrite

BusTools_RT_MessageWrite

BusTools_RT_AbufWrite

BusTools_BC_Init

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_RegisterFunction

BusTools_RT_MessageRead

BusTools_BC_MessageRead

BusTools_RT_StartStop

BusTools_BC_StartStop

BusTools_DumpMemory

BusTools_API_Close

example_rt_monitor.c This example shows how to setup the Remote Terminal in monitor only mode. In this mode

the RT capture all messages to the specified RT but will not respond to the RT messages.

With the exception of calling BusTools_RT_MonitorInit the Remote terminal is configured

identically to a real Remote Terminal.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_TimeTagMode

BusTools_RT_Init

BusTools_RT_CbufWrite

BusTools_RT_MessageWrite

BusTools_RT_AbufWrite

BusTools_RT_MonitorEnable

BusTools_RegisterFunction

BusTools_RT_StartStop

BusTools_RT_MessageRead

BusTools_RT_StartStop

BusTools_API_Close

example_rt_set_status.c This example program sets up RT1 with two subaddresses, SA1 RECEIVE and SA2

TRANSMIT. This example program also demonstrates:

- DISABLING and ENABLING an RT to respond on the 1553 Bus

- toggling of the BUSY, SERVICE REQUEST, and TERMINAL FLAG bits in the RT Status

Word

- ILLEGALIZING commands to an RTSA

An external BC device is required and configured to send a BC->RT command to RT1 SA1

and an RT->BC command to RT1 SA2, at a minimum. Recommended BC setup:

- BC->RT Command RT1, SA1, RECEIVE, 32 Data Words, Bus A

- RT->BC Command RT1, SA1, TRANSMIT, 32 Data Words, Bus A

- BC->RT Command RT1, SA1, RECEIVE, 32 Data Words, Bus B

- RT->BC Command RT1, SA1, TRANSMIT, 32 Data Words, Bus B

After DISABLING the RT, verify that the RT does not respond with Status to the BC

Command on Bus A and Bus B. After ENABLING the RT, verify that the RT responds with

Status to the BC Command on Bus A and Bus B.

Verify the RT Status Word Response using the BC device as the BUSY, SERVICE

REQUEST, and TERMINAL FLAG bits are set and cleared in the RT Status Word. The BC

List should execute at a rate to allow for monitoring of the changes to the RT Status Word.

When ILLEGALIZING commands to RT1-SA1-RX and RT1-SA2-TX, the RT will respond

with the MESSAGE ERROR bit set in the status word. And, for the TRANSMIT command,

the RT will not send any data words.

Note that alternative coding options are included for setting and clearing the RT Status Word

bits.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_RT_Init

BusTools_RT_AbufWrite

BusTools_RT_CbufWrite

BusTools_RT_MessageWrite

BusTools_RT_StartStop

BusTools_API_Close

example_rt_wrap.c This console example program shows how to manually wrap RT receive and transmit messages

buffers. This differ from the automatic way is that the example get the address of the RT

buffer and manipulates the buffer address data.

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_BC_Init

BusTools_BC_MessageAlloc

BusTools_BC_MessageWrite

BusTools_RT_Init

BusTools_RT_CbufWrite

BusTools_RT_MessageWrite

BusTools_RT_AbufWrite

BusTools_RT_MessageWrite

BusTools_BoardIsV6

BusTools_RT_AbufWrite

BusTools_GetAddr

BusTools_MemoryRead2

BusTools_RelAddr

BusTools_MemoryWrite2

BusTools_MemoryRead

BusTools_MemoryWrite

BusTools_RT_StartStop

BusTools_BC_StartStop

BusTools_RegisterFunction

BusTools_BC_MessageRead

BusTools_API_Close

example_timetag_read.c This example set the time tag to either zero or the present time and data. Then it reads the time

tag register every 500 milliseconds (.5 seconds) and prints the raw nanoseconds or

microseconds depending the firmware version. It also converts the time to a string and prints

the time string.

BusTools_ListDevices

BusTools_API_OpenChannel

BusTools_SetInternalBus

BusTools_GetRevision

BusTools_BoardIsV6

BusTools_TimeTagMode

BusTools_RegisterFunction

BusTools_TimeTagRead

BusTools_API_Close

